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Abstract. In this paper we consider soft processes at LHC energies in the framework of the constituent quark
model. We show that this rather naive model is able to describe all available soft process data at lower ener-
gies and to predict the behavior of the total cross section, the elastic and diffractive cross sections at LHC
energy. It turns out that the “input” pomeron that has been used in this approach has parameters that
are close to the so called “hard” pomeron with rather large intercept ∆≈ 0.12 and small value of the slope
α′P ≈ 0.08 GeV

−2. We show that the elastic amplitude has a minimum at impact parameter b= 0 and a max-
imum at b≈ 2 GeV−1. Such a behavior is the result of overlapping of the parton clouds that belong to the
different quarks in the hadron.

1 Introduction

One of the most challenging problems of QCD is to find
the correct degrees of freedom for high energy “soft” in-
teractions. The question is what set of quantum numbers
diagonalizes the interaction matrix at high energies. The
constituent quark model (CQM) [1, 2] is one of the models
that may be a good candidate for a correct description of
the “soft” interactions [3, 4]. In this model the constituent
quarks play the roles of the correct degrees of freedom for
high energy QCD and the structure of a hadron is char-
acterized by two radii: the proper size of the constituent
quark (RQ) and the typical distance between two con-
stituent quarks in a hadron (R). The main assumption is
that R�RQ.
In spite of the fact that this model looks rather naive, it

is supported by the two sets of experimental data, namely,
the CDF double parton cross section at the Tevatron, [5],
and HERA data on inclusive diffraction production with
nucleon excitation [6–10]. In our paper [11] we examined
these data and found that the CQM model describes a lot
of “soft” data in the first approximation; see also [12–
15]. The radius of the constituent quark, which was found
in [11], turned out to be small: R2quark ≈ 0.1–0.2 GeV

−2.
However, this radius depends on energy (at least logarith-
mically as R = R2quark+4αP ln(W/W0)), and a possible
scenario is that at the LHC energy this radius becomes
compatible with the distance between the constituent
quarks (R) (see Fig. 1). Therefore we could expect new
physics at the LHC in such a scenario.

a e-mail: sergb@mail.desy.de

In this paper we are going to develop a systematic ap-
proach to high energy scattering in CQM. To our surprise
we found that only the simplest diagrams of this model
have been discussed in detail, namely the diagrams that in-
clude only the interaction between a pair of quarks. In our
model we include all possible quark interactions, consider-
ing an eikonal approximation for the scattering amplitude
of two colliding quarks (see Fig. 2). In this case, the first
contribution to the elastic amplitude will simply be nine
interactions between the constituent quarks in the pro-
tons. Further contributions to the amplitude will include
the other interaction between the quarks (see Fig. 3). Tak-
ing into account all possible configurations of the quarks,
we will obtain the amplitude that contains nine different
contributions with alternating signs. Such a structure of
the answer is similar to the scattering amplitude of light
nuclei (tritium–tritium scattering). We will show that the

Fig. 1. The proton structure at different energies in CQM
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Fig. 2. The pomeron exchange and eikonalized quark–quark
amplitudes

Fig. 3. The three first orders of the p–p elastic amplitude in the
CQM

result satisfies the unitarity constraint, when we consider
interactions between different configurations of the con-
stituent quarks. The effects of the interaction of several
pairs of quarks is especially important at high energies. If
we consider our amplitude asymptotically at very high en-
ergy, where we may replace the eikonalized amplitude by
a step function, the different parts of the amplitude will
cancel each other, and only the last diagram, in which all
quarks of the projectile interact with all quarks of the tar-
get, will survive. This last diagram will give a unitarized
Froissart-like answer. In our estimates, it turns out that al-
ready at an energy of

√
s= 1855GeV we need to consider

the interaction of five pairs of quarks in the protons. At the
LHC energies, the interaction of seven quark pairs is essen-
tial. This structure of the interaction changes not only the
high energy dependence of the scattering amplitude, but
it also leads to a quite different impact parameter depen-
dence of the answer. In the case of these multi-pomeron
exchanges between the different pairs of quarks, the am-
plitude has a minimum at low b. Such a change is very
important, since it could affect the behavior of the slope
both as a function of energy and as a function of momen-
tum transfer.
Another interesting problem, addressed in this paper,

is the values of the parameters of the “initial” pomeron.
Indeed, it is widely believed that the “soft” pomeron has
as its origin non-perturbative QCD contributions, which
are out of theoretical control at the moment. Everything
that we know about the “soft” pomeron is a mixture of
our phenomenological knowledge with the general theoret-
ical ideas on the properties of non-perturbative QCD con-
tributions [16–27]. The question is the following: can we
obtain the well known phenomenological pomeron using
the “initial” pomeron with large intercept and small slope,
i.e. the so called “hard” pomeron [28]? Does the “hard”

pomeron play any role in the “soft” interactions? There
exist two different points of view on this question. The
first one is that we need to introduce separately two ob-
jects, “soft” and “hard” pomerons, which have different
properties and contribute differently, each in a different
kinematic region; see for example [16, 17, 20, 23] and refer-
ences therein. Another point of view, see for example [29],
is that non-perturbative physics enters our calculations
only in the form of boundary and/or initial conditions and
the “soft” pomeron arises as a result of unitarization ef-
fects and self-interactions of the “hard” pomerons in the
amplitude. Our model may help to clarify this situation.
Taking into account all effects of unitarization, eikonaliza-
tion and accounting all interactions between the different
configurations of the quarks, we will fit the experimental
data. The fit will determine the parameters of the “ini-
tial” pomeron, such as its intercept and slope, as well as
the radius of the constituent quark. We show in this pa-
per that the parameters of the initial “soft” pomeron are
close to the parameters of the “hard” pomeron and quite
different from the parameters of the Donnachie–Landshoff
pomeron [30, 31], which is usually considered as a typical
“soft” pomeron.
The structure of the paper is as follows. In Sect. 2 we

discuss in more detail our approach and methods of cal-
culation. In Sect. 3 we apply our model to the p–p data
and fit the experimental data in order to find numerical
values of the parameters of the “initial” pomeron. Section 4
is dedicated to the elastic amplitude as a function of the
impact parameter. In this section we also consider the dif-
ferent contributions to the elastic amplitude due to interac-
tions of different numbers of quark–quark pairs. In Sect. 5
we calculate the survival probability (SP) of the exclusive
hard processes in p–p scattering. The cross section of the
diffractive dissociation process is calculated in Sect. 6. The
last section, our conclusion, contains the main results of
the paper as well as a discussion of future work in the pro-
posed direction.

2 Proton–proton scattering
in the pomeron approach

The key ingredient of the CQM is the quark–quark scat-
tering amplitude. Considering this model, we need to de-
termine the form of single pomeron exchange between two
quarks. The next step will be the eikonalization of the sin-
gle scattering amplitude, which means a replacement of
the single pomeron exchange in the scattering of the par-
ticular pair of quarks by the eikonal amplitude. The third
step in our calculation will be the consideration of the in-
teractions between all possible quark configurations in col-
liding protons (see Fig. 3). For this last step we need to
know the wave function of the quarks in the proton and
the vertices of the pomeron–quark interactions. Only after
the determination of the wave function and vertices we
will be able to calculate the diagrams for proton–proton
scattering.
Now, let us consider these problems step by step.
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2.1 Quark–quark interactions

We determine the amplitude for q–q and p–p scattering
in the impact parameter representation. In this case the
“soft” pomeron exchange for the interaction of the pair of
quarks (pomeron propagator) has the following form (see
for more on soft pomerons [21, 30–32]):

Ωq–q(Y, b) = σ0e
∆Y e

−b2/R2

πR2
; (1)

here Y = ln(s/1GeV2) is the rapidity of the process, b is
the impact parameter of the process, ∆ is the intercept of
the “initial”, input pomeron, and

R2 = 8R2Q+4α
′
P ln(s/s0) . (2)

HereR2Q is the squared radius of the constituent quark, and
α′P is the slope of the trajectory of the input pomeron. We
will find the numerical values of σ0, ∆, R

2
Q and α

′
P by fit-

ting the data for p–p scattering. We determine the eikonal
amplitude, which is a “major” ingredient in our calcula-
tions, as follows:

Pq–q(Y, b) = 1− e
−Ωq–q(Y,b)/2, (3)

see Fig. 2, where Pq–q is the imaginary part of the quark–
quark scattering amplitude at high energy. Below, dis-
cussing the single quark–quark interaction amplitude, we
will mean only the amplitude given by (3). We will consider
the pomeron of (1) only as the “input”, initial pomeron of
our problem.

2.2 The model of the proton

In order to take into account all possible configurations of
the interacting pairs of quarks, see Fig. 3 and all figures in
the appendices, we need to know the analytical expressions
for the vertices of the quark–pomeron interactions. It is
clear that we need to calculate only the three types of such
vertices, see Figs. 4–6, in which there are one, two or three
groups of pomerons attached to one, two or three quarks.
In order to calculate these vertices we need to know the
wave functions of the constituent quarks inside a proton.
We use a very simple Gaussian model for this wave func-
tion, which corresponds to an oscillatory potential between
a pair of quarks in a proton. In this model we have [33]

Ψ =
α

π
√
3
e−
α
2

(∑
x2i

)
, (4)

where the constant α is related to the electromagnetic ra-
dius of the proton:

α= 1/R2electr ≈ 0.06GeV
2. (5)

For the impact factor presented in Fig. 4, we have

V1(q) =

∫ 3∏

i=1

dxi |Ψ(x1, x2, x3)|
2δ(x1+x2+x3)e

iqx1

= e−
q2

6α . (6)

Fig. 4. The one pomeron vertex in quark–quark interaction

Fig. 5. Two pomeron vertex in quark–quark interaction

Fig. 6. The three Pomeron vertex in q–q interaction

The impact factor for two groups of pomerons attached
to two different quarks is shown in Fig. 5:

V2(q1, q2) =

∫ 3∏

i=1

dxi |Ψ(x1, x2, x3)|
2δ(x1+x2+x3)

× eiq1x1+q2x2

= e−
q21
6α−

q22
6α+

q1q2
6α . (7)

The last impact factor is the vertex of Fig. 6. We have
for this vertex

V3(q1, q2, q3) =

∫ 3∏

i=1

dxi|Ψ(x1, x2, x3)|
2δ(x1+x2+x3)

× eiq1x1+q2x2+q3x3

= e−
(q2−q3)

2

8α −
(q1−q2/2−q3/2)

2

6α . (8)

In all three cases the total transferred momentum of the di-
agrams is defined as the sum of the transverse momenta of
all pomerons (qi): k =

∑
qi.

2.3 The elastic amplitude of p–p scattering

We have all ingredients for the calculation of the elastic
amplitude. In the CQM we can write the imaginary part
of the amplitude as the sum of the imaginary parts of the
amplitudes that describe the interactions between different
numbers of quark pairs:

ImA(s, b) = ImA1pair(s, b)− ImA2pairs(s, b)

+ ImA3pairs(s, b)+ . . .+ImA9pairs(s, b) .
(9)
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The maximum number of possible quark pair interactions
in the amplitude is nine. The three first orders of the pos-
sible configurations of interactions are shown in Fig. 3 and
the calculations of all other orders are presented in Ap-
pendix . The amplitude defined in a such way incorporates
unitarity by construction. Indeed, checking the expressions
for the different terms of the amplitude that are written
in Appendix B, it is easy to see that at asymptotically
high energies only the last term of (9) will survive, giving a
Froissart-like answer for the whole amplitude.
We proceed to calculate the contribution of the first di-

agram of Fig. 3, i.e. the first term of the r.h.s. of (9). We
perform a Fourier transformation of the vertex of (6) from
momentum to impact parameter space:

V̂1(b) =

∫
d2q

4π2
e−q

2/(6α)+iqb =
3α

2π
e−
3α
2 b
2
. (10)

Using this vertex we obtain the contribution to the elas-
tic amplitude from the one pomeron exchange A1q–q(s, b),
which is

ImA1pair(s, b) = 9
9α2

4π2

∫
d2b1

∫
d2b2 e

− 3α2 (b−b1)
2

×Pq–q(Y, b2)e
−3α2 (b1−b2)

2
,

(11)

where the first coefficient in (11) is the total number of q–q
interactions in this order. Using more complicated vertices,
which are given by (7) and (8), we calculate all terms that
contribute to the elastic amplitude, i.e. terms at the r.h.s.
of (9). In Appendices and the resulting expressions for
the amplitude A(s, b) are written, as well as examples are
given of calculations of diagrams with different numbers of
interacting pairs of quarks.

2.4 The total, elastic cross sections and the elastic
slope Bel of the proton–proton interaction

The expression for the amplitude (Appendix B) is deter-
mined in the impact parameter space and now we can eas-
ily calculate the different cross sections for the processes of
interest.
First, we consider σtot.
The total cross section in the impact parameter repre-

sentation is simply

σtot(s) = 2

∫
d2b ImA(s, b) . (12)

Fitting the experimental data at low energies we also add
to this cross section the contribution of the secondary
reggeons, σRegtot [34].
Next, we consider σel.
The elastic cross section in the same framework is

equal:

σel(s) =

∫
d2b|A(s, b)|2 =

∫
d2b(ImA(s, b))2. (13)

where we treat the quark–quark amplitude as mostly imag-
inary, as is usually assumed for the pomeron.
Finally, we consider Bel.
We consider only the first term of the elastic amplitude,

i.e. A1q–q(s, b). In this case we have for the forward (t= 0)
elastic exponential slope Bel:

Bel =
9α2

4π2

∫
d2b1

∫
d2b2

∫
d2b b2e−

3α
2 (b−b1)

2

×Pq–q(Y, b2)e
− 3α2 (b1−b2)

2

/
2

∫
d2bPq–q(Y, b)

=
1

α

σ1q–qtot

σ1q–qtot

+

∫
d2b b2Pq–q(Y, b)

σ1q–qtot

. (14)

Here

σ1q–qtot = 2

∫
d2b Pq–q(Y, b) .

We add the contribution of the secondary reggeons to this
expression, which one needs to take into account at low en-
ergies:

Bel =
9σ1q–qtot

9σ1q–qtot +σ
Reg
tot

R2electr+
9
∫
d2b b2Pq–q(Y, b)

9σ1q–qtot +σ
Reg
tot

+2
(
α′R−α

′
SP

)
ln(s/s0)

σRegtot

9σ1q–qtot +σ
Reg
tot

. (15)

The third term of the r.h.s. of (15) contains the contri-
bution of the secondary reggeons, which we do not con-
sider in our model. We take the secondary reggeons into
account only on the level of proton–proton scattering.
Therefore, the parameters that we take for this contri-
bution have a pure phenomenological origin. We take for
the slope of the secondary reggeons α′R = 0.86 GeV

−2 and
for the slope of the phenomenological “soft” pomeron1

α′SP = 0.25GeV
−2 at

√
s0 = 9GeV in the r.h.s. of (15) [30–

32, 34]. Generalizing this expression to the case of the full
elastic amplitude (see (9)) at low energies we obtain

Bel =
9σ1q–qtot

σtot+σ
Reg
tot

R2electr+
9
∫
d2b b2Pq–q(Y, b)

σtot+σ
Reg
tot

+2
(
α′R−α

′
SP

)
ln(s/s0)

σRegtot

σtot+σ
Reg
tot

+
9∑

i=2

∫
d2b b2 ImAi(b, s)

σtot+σ
Reg
tot

, (16)

1 The slope α′SP is the slope of the phenomenological
pomeron in proton–proton scattering [30–32, 34], and it is not
related to the slope α′P of our “initial” pomeron in quark–quark
scattering.
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Fig. 7. The plots for the
total cross section (a),
elastic cross section (c),
and elastic slope (b). The
experimental data are
from [34] and references
therein

whereas at high energy we have

Bel =
9σ1q–qtot

σtot
R2electr+

9
∫
d2b b2Pq–q(Y, b)

σtot

+
9∑

i=2

∫
d2b b2 ImAi(b, s)

σtot
. (17)

It is also interesting to calculate the elastic cross section
using the simple expression for the elastic cross section that
is obtained in the model with the phenomenological “soft”
pomeron. Indeed, in this case we calculate the elastic cross
section using the following formula:

σel(s) =
σ2tot
16πBel

. (18)

This expression is correct only in the case when one “soft”
pomeron is considered. It will be interesting to compare
the calculations of the elastic cross section given by (13)
with the calculations of (18). Indeed, in this case we check
the possibility that one may reproduce the simple result

of (18) by the theory in which many eikonalized pomeron
exchanges are taken into account. So, in the next section
we will perform data fitting and will make the calculations
using both expressions, (13) and (18), in order to show the
importance of interaction of many quark pairs.

3 The proton–proton scattering data
and the parameters of the input pomeron

Now we are able to apply our model to the p–p interactions
and, fitting the experimental observables, we will extract
the values of the parameters of our input pomeron (see
(1)). In Fig. 7 we present the plots for the total cross sec-
tion, the elastic cross section and the elastic slope in the
energy range W = 23–1855GeV. We perform all calcula-
tions numerically2 using the formulae of the previous sub-
section with the amplitude written in Appendix B. There

2 The Fortran code can be obtained by e-mail request;
sergb@mail.desy.de.
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Fig. 8. The plots for the
total cross section (a),
elastic cross section (c),
and elastic slope (b), at
high energies

are two different plots that we present for the elastic cross
section using definitions (13) and (18). The solid line repre-
sents the elastic cross section given by (18), and the dashed
line represents calculations performed with (13).
From these plots we see that the model describes the

experimental data quite well. The parameters of the sin-
gle pomeron of (1) extracted from the data fitting are the
following:

• the slope of the input pomeron trajectory:

α′ = 0.08GeV−2 ; (19)

• the input pomeron’s intercept:

∆= 0.118 ; (20)

• the value of the cross section for the input pomeron at
s0 = 1GeV

2:

σ0 = 6.3 GeV
−2 ; (21)

• the radius of the constituent quark:

R2quark = 0.16GeV
−2 . (22)

With these parameters we extrapolate our calculations for
the cross sections and slope at higher energies. The result-
ing plots are shown in Fig. 8.
It should be stressed that the above parameters are

quite different from the Donnachie–Landshoff pom-
eron [30, 31]. The pomeron intercept that we obtained is
higher and the slope is much lower than the intercept and
the slope of the D–L pomeron. We may conclude that such
a small value of the pomeron slope indicates that our input
pomeron may have a “hard” origin.

4 Behavior of the elastic amplitude
of p–p scattering in our model

The elastic amplitude in our model has a sufficiently com-
plex structure. It contains contributions from different con-
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Fig. 9. The contri-
butions to the elastic
amplitude from the
interactions of differ-
ent numbers of quark
pairs at different en-
ergies

figurations for the interactions of the quarks inside the
protons. We found all possible terms that contribute to
the elastic amplitude, see Appendix B, and, therefore, we
can find which terms in the elastic amplitude are import-
ant at different energies. It turns out that even at low
energies the interactions of two quark pairs, i.e. the in-
teractions between two quarks in one proton with two
quarks in another proton, are not negligible. At Teva-
tron energy,

√
s= 1855GeV, we already need to take into

account the contributions from five pairs of interacting
quarks. At energy of the order of the LHC energy,

√
s=

15000GeV, the contribution of the interaction of seven
quark pairs is significant. At this energy the contribution
of two quark pair interaction exceeds the contribution of
one quark pair interaction (see Fig. 9). This is a signal that
the parton clouds start to overlap, leading to the picture
of Fig. 1.
From Fig. 9 we also see that even at energy

√
s =

1855GeV, the one quark pair contribution to the elastic

amplitude exceeds unity. The unitarization of the ampli-
tude in this case is achieved not by eikonalization of the
quark–quark interaction, but by including more compli-
cated configurations of the quarks inside the protons in
the elastic amplitude. Therefore, the form of the impact
parameter dependence of the amplitude turns out to be
different from the usual Gaussian one. Indeed, the contri-
bution of two quark pair interactions, which have a nega-
tive sign in the amplitude, is equal to or larger than the
contribution of one quark pair interaction. At the same
time the one quark pair interaction is wider in the im-
pact parameter space (see again Fig. 9). The contributions
of all terms in the elastic amplitude lead, therefore, to a
situation in which the maximum of the elastic amplitude
moves from zero impact parameter to the impact parame-
ter b≈ 2 GeV−1 (see Fig. 10). This effect reflects very sim-
ple physics. At high energy at small impact parameter the
multiple quark pair interactions are important and elastic
production becomes mostly peripheral.
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Fig. 10. The elastic amplitude of the p–p scattering as a func-
tion of impact parameter at different energies

5 Survival probability
of the “hard” processes in p–p scattering

In this section we consider the calculation of the survival
probability for the process p+ p→ p+[LRG]+dijet+
[LRG]+ p, where p and p are the colliding protons and
LRG is the large rapidity gap. In this process there are
two large rapidity gaps – the rapidity intervals without
secondary hadrons. The cross sections of such processes
are small in comparison with the inclusive production, or,
in other words, in comparison with the process in which
no rapidity gap is selected. We call the ratio of these two
processes, exclusive and inclusive (or the process with-
out LRG), the survival probability of the large rapidity
gap [35, 36]. In the simple case of the eikonal approach to
the proton–proton interaction, the survival probability is
determined by a simple formula [35–38]:

Ŝ2 =

∫
d2bA(s, b)σhard(b)∫
d2 bσhard(b)

, (23)

where

A(s, b) = e−Ω(s,b) (24)

is the probability that no inelastic interaction between the
scattered hadrons has occurred at energy

√
s and impact

parameter b.
Using a simple Gaussian parameterization for σhard(b),

namely

σhard(b) = σhard
e
− b2

R2
H

4πR2H
, (25)

with the following value of the radius R2H estimated
in [37, 38] on the base of the HERA data [39], for the elastic
J/ψ photoproduction:

R2H = 8GeV
−2, (26)

we reduce (23) to the form

Ŝ2 =
1

πR2H

∫
d2bA(s, b)e

− b2

R2
H . (27)

The difference of the calculation of the SP in our model
from the calculations above is that we consider as principal
degrees of freedom the constituent quarks, but not the pro-
tons. Therefore, we need to determine the expression for
SP in terms of the interacting quark pairs. We begin with
the discussion of the cross section for the exclusive “hard”
production in the case of interaction of only one pair of
quarks. For this process we have

σhard(b) = σhard
(
Â1pair(s, b)

)2
, (28)

with the amplitude Â1pair(s, b), calculated from (11) with
the following replacement:

Pq–q(Y, b2)→
e
−

b22
2R2
Q–H

2πR2H
P̂q–q(Y, b2) , (29)

where

P̂q–q(Y, b2) = 1−Pq–q(Y, b2) = e
−Ωq–q(Y,b2)/2 (30)

in (29) means that no inelastic interactions occur between
the pair of quarks considered. This pair of quarks, which
produces a “hard” jet, interacts elastically. The amplitude
of this process is illustrated in Fig. 11. In the expression
for Â(s, b), we need to introduce a new “hard” radius R2QH,
which is related to the “hard” process on the quark level.
We find the numerical value of R2QH in the following way.
For the simplest process of “hard” production without any
“soft” rescattering, the answer will be the same for any
model:

e
− b2

2R2
H = 9

9α2

4π2

∫
d2b1

∫
d2b2 e

− 3α2 (b−b1)
2

× e
−

b22
2R2
QH e−

3α
2 (b1−b2)

2
. (31)

Indeed, we can see that, using this equality in (28), we re-
produce the expression given by (25). From (31) we obtain
the value of R2QH:

R2QH ≈ 1.1 GeV
−2. (32)

Fig. 11. The first order amplitude of the LRG “hard” process
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Fig. 12. The general struc-
ture of the amplitude of the
LRG “hard” process for the
case of interaction of two
quark pairs

Table 1. The survival probability factor as a function of
√
s

SP(
√
s= 23GeV) SP(

√
s= 1855 GeV) SP(

√
s= 15000 GeV) SP(

√
s= 18000 GeV)

0.23 0.052 0.0175 0.0155

Generalizing the procedure defined by (29) we obtain the
answer for the SP amplitude, Â(s, b), in all orders. Indeed,
any term of the amplitude given in Appendix B, see (B.1),
has an integration over the product of eikonalized am-
plitudes of interacting quark pairs, Pq–q(bi) . . . Pq–q(bj).
When we calculate the SP, we should take into account the
possibility that the “hard” process can occur in the interac-
tion of any pair of quarks. Therefore, for the pair with the
“hard” process a replacement of (29) should be performed,
whereas other pairs of quarks will still interact elastically.
It means that, for any integral in the expansion of (B.1) of
the elastic amplitude, we will make the following replace-
ment for any term of Pq–q(bi) . . . Pq–q(bj) type:

Pq–q(bi) . . . Pq–q(bj)→
e
−

b2i
2R2
QH

2πR2H
P̂q–q(bi) . . . Pq–q(bj) (33)

for each Pq–q(bk) in the chain Pq–q(bi) . . . Pq–q(bj). This
procedure is illustrated by Fig. 12 for the case of the inter-
action of two pairs of quarks.
Performing these replacements and summing all terms,

we obtain a new amplitude Â(s, b) (see (B.1)). In Ap-
pendix C we show an example of this procedure for the
A3pairs(s, b) term of the elastic amplitudeA(s, b).With this
amplitude, Â(s, b), we determine the “hard” cross section
as follows:

σhard ∝

∫
d2b (Â(s, b))2, (34)

where the first term of this expansion has the form

σ1hard ∝
81

4π2R4H

∫
d2b

(
9α2

4π2

∫
d2b1

∫
d2b2 e

− 3α2 (b−b1)
2

× P̂q–q(Y, b2)e
−

b22
2R2
QH e−

3α
2 (b1−b2)

2
)2
.

(35)

Finally, the answer for the survival probability factor in all
orders of the expansion of (B.1) looks as follows:

Ŝ2 = 4π2R4H

∫
d2b (Â(s, b))2 (36)

/∫
d2b

(

9
9α2

4π2

∫
d2b1

∫
d2b2

×e−
3α
2 (b−b1)

2
e
−

b22
2R2
QH e−

3α
2 (b1−b2)

2

⎞

⎠

2

.

For example, there is the first term, which contributes to
Ŝ2:

Ŝ21 =

⎛

⎜
⎜
⎝

∫
d2b
(
9α2

4π2

∫
d2b1

∫
d2b2 e

− 3α2 (b−b1)
2
e
−

b22
2R2
QH

×P̂q–q(Y, b2)e−
3α
2 (b1−b2)

2
)2

⎞

⎟
⎟
⎠

⎛

⎜
⎝

∫
d2b
(
9α2

4π2

∫
d2b1

∫
d2b2 e

− 3α2 (b−b1)
2

×e
−

b22
2R2
QH e−

3α
2 (b1−b2)

2
)2

⎞

⎟
⎠

.

(37)

The values of the survival probability factor, Ŝ2, cal-
culated in this approach, are shown in Table 1. We see
that these values are close to the values of the sur-
vival probability for the central diffraction process cal-
culated in [40]. We also performed the calculation of
the integrant in the numerator of (36), which is pro-
portional to the amplitude of the “hard” central diffrac-
tion process. The plots of this integrant as a function
of the impact parameter at different energies are pre-
sented in Fig. 13. Considering these graphs, we con-
clude that the main contribution to the amplitude of
the central diffraction “hard” production comes from
the non-central values of the impact parameter, and it
is almost zero for the central impact parameter at high
energies.
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Fig. 13. The impact pa-
rameter behavior of the
integrant in the numer-
ator of (36) at energies
W = 1855 GeV andW =
18000 GeV

6 The cross section
of the diffraction dissociation

The elastic amplitude of the considered model accounts
for many pomeron exchanges between different pairs of
quarks. Now we want to calculate the cross section of the
diffraction dissociation processes taking into account all
these interactions. The diffractive dissociation (DD) pro-
cesses for us are all processes in which no particle has been
produced in the rapidity region between two scattered pro-
tons. From the unitarity constraint we have

σtot = σel+σinel+σDD . (38)

Therefore

σDD = σtot−σel−σinel . (39)

Fig. 14. The sum of
elastic and inelastic cross
sections in comparison
with the total cross sec-
tion and small mass DD
cross section as the func-
tion ofW =

√
s

From our previous calculations we know the values of σel
and σtot. So, in order to calculate σDD we need to cal-
culate the value of σinel, and it is clear that, since we do
not consider the triple pomeron vertex in our model, σDD
contains only the contribution from diffractive processes
of the low mass states, whereas the large mass produc-
tion states are not accounted for in the framework of the
calculation.
The calculation of σinel is pretty simple. In first order,

where

σ1tot = 2

∫
d2b ImA1pair(s, b) = 18

∫
d2b Pq–q(Y, b) ,

(40)

for σinel we have

σinel =

∫
d2bAinel1pair(s, b) = 9

∫
d2b P inelq–q (Y, b) , (41)
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Table 2. The low mass diffractive dissociation cross section at high energies as a function of
√
s

σDD(
√
s= 7000 GeV) σDD(

√
s= 10000 GeV) σDD(

√
s= 15000 GeV) σDD(

√
s= 18000 GeV)

2.3 mb 0.4 mb 0.35 mb 0.3 mb

with

P inelq–q (Y, b) = 1− e
−Ωq–q(Y,b) . (42)

We perform the calculation of σinel for all possible interac-
tions between the pairs of the quarks in the protons using
the following simple recipe. In each expression for σtot for
the interactions of the different numbers of quark pairs
considered,

σtot = 2

∫
d2b ImA(s, b) , (43)

we make the following replacement:

Pq–q(Y, bi) . . . Pq–q(Y, bj)→
1

2
P inelq–q (Y, bi) . . . P

inel
q–q (Y, bj) ,

(44)

with P inelq–q given by (42). After the calculation of σinel with
the help of (41) we obtain the value of σDD. The result of
the calculations for the energy range W = 100–3000GeV
is shown in Fig. 14, as well as the sum of the elastic and
inelastic cross sections, in comparison with the total cross
section.
For energies higher than W = 3000GeV, the cross sec-

tion of the diffractive dissociation process is small (see
Table 2). The smallness of the value of the σDD at high en-
ergy is a sign of the “blackness” of the process at central
impact parameter, when the diffractive dissociation pro-
cess is to be mostly peripheral. Nevertheless, it is import-
ant to notice again that in calculations of DD processes, we
neglected the diffraction dissociation processes with large
mass production. As was mentioned before, such processes
may be described if we introduce in the model the triple
pomeron vertex [11]. We did not consider this vertex in our
calculations; therefore, our result for the cross section of
the DD processes, which is the sum of single diffraction and
double diffraction processes, is smaller than it could be in
the case that the triple pomeron vertex is included.

7 Conclusion

In this paper we consider the proton–proton interactions
in the framework of the constituent quark model at high
energies. The typical “soft” process of p–p scattering we de-
scribed taking into account all interactions between pairs
of quarks in the protons, modeling the quark–quark in-
teraction by an eikonal formula. It turns out that in this
model the interactions of one, two or three quarks from
one proton with two or three quarks from the second pro-
ton surprisingly become essential even at low energies. In-
deed, if we look at Fig. 9, we see that even at an energy

of
√
s = 23GeV the contribution from the interaction of

two pairs of quarks is approximately one third of the con-
tribution of one pair. Of course, at higher energies the
contributions of more interacting quark pairs became more
important. For example, at LHC energy the interactions
of one and two pairs of quarks equally contribute to the
elastic amplitude, and at this energy we need to account
the contribution of seven quark pairs. This interaction pic-
ture leads to a very natural scenario of unitarization. At
high energies the contributions from the interaction of one
and two pairs of quarks cancel each other, and the final
amplitude at given impact parameter is smaller than one
(see Fig. 10). Due to this interaction structure the am-
plitude has a maximum at b ≈ 2 GeV−1 at high energy,
which means that elastic production is mostly peripheral
at high energies. We see also that in this case unitarization
is achieved by exploring the internal structure of the pro-
ton rather than details of the interactions. Another result,
observed in the present model and related to the unitariza-
tion of the amplitude, is the relatively small value of the
amplitude at zero impact parameter. Indeed, even at an en-
ergy of

√
s= 18000GeV at b= 0 the amplitude is not close

to one. The interactions are still “gray” and not “black”.
Many pomeron interactions between different quark con-
figurations in both protons lead to the “black” picture in
the quark–quark interactions but to the “gray” picture in
the proton–proton interaction. In spite of the “black” con-
tributions of one, two or three interacting quark pairs, the
protons at central impact parameter stay “gray.” However,
we should stress that in our calculations we assumed that
the quark–quark interaction is described by the eikonal
approach. This specific mechanism manifests itself in the
form of the b dependence of the amplitude, which is quite
different from the usual b dependence. We also considered
the Gaussian form for the quark impact factors, which also
could affect the final form of the elastic amplitude. It is pos-
sible that inclusion in the consideration of more realistic
quark–pomeron impact factors as well as triple pomeron
vertices will change the picture of the proton–proton inter-
actions in CQM.
The model considered in the paper fits the experimen-

tal data pretty well (see Fig. 7). Using the parameters of
the “input” pomeron, which we obtained through fitting
of the data, we can predict the values of the cross sec-
tions at high energies. Doing so, we did not find a deviation
of the behavior of the elastic slope, Bel, from the simple
linear parameterization (see the plot of Fig. 8). The expla-
nation of this effect is the following. In spite of the hope
that the constituent quarks will have strong overlap at high
energies and this effect will change the energy behavior of
Bel, it actually does not happen. The value of the size of
the constituent quark obtained from the data fit is small,
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R2quark ≈ 0.16GeV
−2. The slope of the initial quark–quark

amplitude, which is our “input” pomeron, also turns out to
be small, α′ ≈ 0.08GeV−2. Therefore, even at an energy of√
s=18000GeV we obtain for the radius of the constituent
quark Rquark ≈ 0.3–0.4 fm, which is still two times smaller
than the radius of the proton. This again supports the con-
clusion that our interactions at LHC energy are still far
from the “black” disk limit.
We also calculated the survival probability factor for

different energies, and it turns out to be similar to the
values obtained in the model proposed in [40]. The param-
eters of the “input” pomeron in our paper and in [40] are
close, in spite of the fact that we did not involve any non-
perturbative physics in our calculations. The intercept of
the “input” pomeron that we obtained is ∆ ≈ 0.12. This
intercept is larger than the intercept of [40]. The slope,

α′ ≈ 0.08GeV−2, is very close to the one of [40]. Consider-
ing the impact parameter dependence of the amplitude of
the exclusive central diffraction “hard” process, see Fig. 13,
we see that the maximum of the amplitude is located at the
peripheral impact parameter b≈ 3 GeV−2 at the energy of
LHC. The probability of this process at very central impact
parameter is almost zero. The calculations of the cross sec-
tion of small mass diffractive dissociation, see Fig. 14 and
Table 2, support this conclusion. This cross section is very
small at high energy, which reflects the “blackness” of the
interactions at central impact parameter at high energy,
when diffractive processes became mostly peripheral.
The values of the parameters of our “input” pomeron,

the slope (α′P ≈ 0.08GeV
−2) and the intercept (∆ ≈ 0.12)

give rise to the idea that this pomeron is not “soft” (see [32]
for the typical parameters of the soft pomeron). The pa-
rameters that we obtained were related to the so called
“hard” pomeron. Therefore, one of the results of this pa-
per is the idea that, perhaps, we do not need to introduce
a “soft” pomeron in order to describe the “soft” data. Con-
sidering the internal structure of the colliding hadrons as
well as the unitarization corrections for the amplitude we
can describe the p–p data using only one “hard” pomeron.
The present model, SQM, has very interesting prop-

erties, allowing us to describe a lot of experimental data
and interpet the proton–proton interaction in terms of in-
teracting quarks. A lot of new and interesting informa-
tion may be obtained on the unitarization of the cross
sections and pomeron structure in the framework of the
CQM. Nevertheless, there are a lot of further investiga-
tions and improvements possible and needed. We hope
that the present paper will contribute to the understand-
ing of hadron–hadron interactions in terms of constituent
quarks and that further work in this direction will be
continued.
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Appendix A

In this appendix, we calculate as an example of our cal-
culations two diagrams that contribute to the elastic am-
plitude: the first diagram of Fig. 15 and the first diagram
of Fig. 16.
We begin with the first diagram of Fig. 15. There are

six diagrams of this type, and we need two vertices (see (6)
and (8)) for the calculations:

Vup(k) = e
−k2/(6α),

and

Vdown(k) = e
− 1
8α (q2−q3)

2− 1
6α (q1−q2/2−q3/2)

2
,

where qi is the momentum transferred of each single
pomeron, and k = q1+ q2+ q3. So, we have for our diagram

D1,3pairs(k) = 6

∫ 3∏

i=1

d2qi
4π2
Pq–q(qi)e

−k2/(6α)

× e−
1
8α (q2−q3)

2− 3
8α (q1−k/3)

2

×
(
4π2δ2(k−q1−q2−q3)

)
,

(A.1)

where Pq–q(qi) is the Fourier transform of the amplitude
given by (3).
Since we have no simple analytic expression for Pq–q(qi),

wemake a Fourier transformation for each function Pq–q(qi)
and rewrite our expression in terms of Pq–q(bi):

Pq–q(qi) =

∫
d2bi Pq–q(bi)e

iqibi . (A.2)

Here bi is the impact parameter variable, which is conju-
gate to the momentum qi of the single pomeron. We also

Fig. 15. Four diagrams of the three quark pair interaction. The
wave line describes the eikonal amplitude for quark–quark in-
teraction P (Y, b)

Fig. 16. Four diagrams of the six quark pairs interactions
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make a Fourier transformation from k to the impact pa-
rameter variable b. We obtain

D1,3pairs(b) =
6

64π6

∫ 3∏

i=1

d2bi Pq–q(bi)

∫ 3∏

i=1

d2qi

×

∫
d2k e−ikbei

∑3
i=1 qibie−k

2/(6α)

× e−
1
8α (q2−q3)

2− 3
8α (q1−k/3)

2

× δ2(k−q1−q2−q3) . (A.3)

To make this expression easier for our calculations we
introduce the new variables

x1 = q2− q3 ; x2 = q1−k/3 ; x3 = q3 ,

q1 = x2+k/3 ; q2 = x1+x3 ; q3 = x3 . (A.4)

The Jacobian of this transformations is equal to unity; we
obtain

D1,3pairs(b) =
6

64π6

∫ 3∏

i=1

d2bi Pq–q(bi)

∫ 3∏

i=1

d2xi

×

∫
d2k e−ikbeib1(x2+k/3)eib2(x3+x1)eib3x3

× e−
1
6αk

2− 1
8αx

2
1−

3
8αx

2
2

× δ2(2k/3−x1−x2−2x3) . (A.5)

Performing the x3 integration we have

D1,3pairs(b) =
6

4 ·64π6

∫ 3∏

i=1

d2bi Pq–q(bi)

∫ 2∏

i=1

d2xi

×

∫
d2k eik(−b+b1/3+b2/3+b3/3)

× eix1(b2/2−b3/2)eix2(b1−b2/2−b3/2)

× e−
1
6α k

2− 1
8αx

2
1−

3
8αx

2
2 . (A.6)

Performing one integration over xi and k, we obtain the
final answer for this diagram:

D1,3pairs(b) =
6α3

2π3

∫ 3∏

i=1

d2bi Pq–q(bi)

×e−
3α
2 (b−b1/3−b2/3−b3/3)

2−α2 (b2−b3)
2−2α3 (b1−b2/2−b3/2)

2
.

(A.7)

As a second example of the calculational technique we
calculate the first diagram of Fig. 16. The main steps in the
calculation of this diagram are the same as in the calcula-
tion of the first diagram of Fig. 15. Therefore, now we are
not focused on the detailed explanation of the main steps,
but we rather clarify the principal points of the calcula-
tions technique.
Two vertices of the pomerons–quarks coupling have the

following form (see (7) and (8)):

Vup(k) =

e−
1
6α (q1+q2+q3)

2− 1
6α (q4+q5+q6)

2+ 1
6α (q1+q2+q3)(q4+q5+q6),

and

Vdown(k) =

e−
1
8α (q1+q4−q2−q5)

2− 1
6α (q3+q6−q1/2−q2/2−q4/2−q5/2)

2
.

Here, the total momentum transferred is k =
∑6
i=1 qi. We

change variables, in order to obtain a simple Gaussian ex-
pression for these vertices:

x1−x2 = q1+ q2+ q3 , x1+x2 = q4+ q5+ q6 ;

x3 = q1+ q4− q2− q5 , x4 = 3q3/2+3q6/2−k/2 ;

x5 = q5 , x6 = q6 . (A.8)

For the old variables qi and k we have

k = 2x1 ,

q1 =−x1/3−x2+x3/2−x4/3+x5+x6 ;

q2 = 2x1/3−x3/2−x−4/3−x5 ,

q3 = 2x4/3−x6+2x1/3 ;

q4 = x1+x2−x5−x6 , q5 = x5 , q6 = x6 .
(A.9)

Here the momenta q1 are not independent. For these mo-
menta we used the delta function constraint

q1 = k− q2− q3− q4− q5− q6 .

Using (A.9) we calculate the Jacobian of the variable
change; it is equal to 49 . In the new variables the vertices
look very simple:

Vup(k) = e
− 1
6αx

2
1−

1
2αx

2
2 , (A.10)

Vdown(k) = e
− 1
8αx

2
3−

1
6αx

2
4 . (A.11)

We consider the exponents that stem from the Fourier
transformation from momentum to impact parameter
representation:

e−ikbei
∏6
i=1 qibi , (A.12)

where we also have

6∏

i=1

Pq–q(qi)→
6∏

i=1

Pq–q(bi) . (A.13)

Putting in (A.12) the substitutions of (A.9), we obtain for
the exponents of (A.12)

eix1(−2b+2b2/3+2b3/3+b4−b1/3)eix2(b4−b1)

× eix3(b1/2−b2/2)eix4(−b2/3+2b3/3−b1/3)

× eix5(−b2−b4+b5+b1)eix6(−b3−b4+b6+b1). (A.14)

The vertices of (A.10) and (A.11) have no dependence on
the variables x5 and x6. Therefore, in the integration over
x5 and x6 we obtain the following delta functions:

δ2(b5+ b1− b2− b4)→ b5 = b2+ b4− b1 , (A.15)

δ2(b6+ b1− b3− b4)→ b6 = b3+ b4− b1 . (A.16)
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In this case, after the integration over b5 and b6, the answer
for the functions Pq–q(bi) (see (A.13)) looks as follows:

6∏

i=1

Pq–q(qi)→
4∏

i=1

Pq–q(bi)Pq–q(b2+ b4− b1)

×Pq–q(b3+ b4− b1) , (A.17)

Of course, if we need, we should also replace b5 and b6 in the
other exponents of (A.14) substituting (A.15) and (A.16).
In our particular diagram this replacement is not in order
since the exponents of (A.14) do not depend on b5 and b6.
We are ready to write the answer for our diagram. Per-

forming a simple integration over the variables xi, where
i = 1, . . . , 4, we obtain (we use the Gaussian functions
of (A.10) and (A.11) with the four exponents of (A.14))

D1,6Pom(b)

=
6α4

π4

∫ 4∏

i=1

d2biPq–q(bi)Pq–q(b2+ b4− b1)

×Pq–q(b3+ b4− b1)

× exp

[
−
3α

2
(2b−2b2/3−2b3/3−b4+b1/3)

2

−
α

2
(b4−b1)

2−
α

2
(b1−b2)

2

−
2α

3
(b3−b2/2−b1/2)

2

]
. (A.18)

We calculate all other diagrams that contribute to the
elastic amplitude using the same methods as have been de-
scribed above. The answer for the entire amplitude, with
the expression for all possible diagrams of our model in-
cluded, is written in Appendix .

Appendix B

In this appendix we present the resulting expressions for
the full elastic amplitude, order by order. We have for the
amplitude (see (9))

ImA(s, b) = ImA1pair(s, b)− ImA2pairs(s, b)

+ ImA3pairs(s, b)+ . . .+ImA9pairs(s, b) .
(B.1)

The answer for the contribution to the amplitude from one
pair of quarks,A1pair(s, b), is given in (11). So we start from
the contribution of two pairs. The diagrams of this contri-
bution are shown in Fig. 17.

Fig. 17. Two diagrams for the interactions of two quark pairs

We have for A(s, b)2pairs

ImA2pairs(s, b) =
54α2

5π2

∫ 2∏

i=1

d2bi Pq–q(bi)

× e−
6α
5 (b1/2+b2/2−b)

2−α2 (b1−b2)
2

+
27α2

2π2

∫ 2∏

i=1

d2bi Pq–q(bi)

× e−3α(b1/2+b2/2−b)
2−α4 (b1−b2)

2
.

(B.2)

The diagrams for the three pairs of interacting quarks
are shown in Fig. 15. We have for this contribution

ImA3pairs(s, b)

=
6α3

2π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−
3α
2 (b−b1/3−b2/3−b3/3)

2−α2 (b2−b3)
2−2α3 (b1−b2/2−b3/2)

2

+
27α3

π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−
α
2 (3b−b1−b2−b3)

2−α2 (b2−b1)
2− 3α4 (b−b3)

2

+
9α3

π3

∫ 2∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b1)

× e−
α
3 (3b−3b1/2−3b2/2)

2−α4 (b2−b1)
2

+
27α3

π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−3α(b−b2/2−b3/2)
2−α2 (b2−b1)

2−α2 (b1−b3)
2
. (B.3)

For the amplitude corresponding to four pairs we have
the diagrams of Fig. 18.

Fig. 18. Five diagrams for interactions of four quark pairs
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For this contribution we have

ImA4pairs(s, b)

=
36α4

π4

∫ 4∏

i=1

d2biPq–q(bi)

× exp
[
−
α

6
(6b+b1−2b2−2b3−3b4)

2

−
α

2
(b1−b4)

2

−
α

2
(b1−b2)

2−
3α

2
(b1/3+b2/3−2b3/3)

2

]

+
36α4

π4

∫ 4∏

i=1

d2biPq–q(bi)

× exp
[
−
α

6
(6b−b1−2b2−b3−2b4)

2

−
α

2
(b1−b3)

2

−
α

2
(b1−b2)

2−
2α

3
(b1/2−b2/2−b3+b4)

2

]

+
27α4

4π4

∫ 3∏

i=1

d2biPq–q(bi)Pq–q(b1− b2− b3)

× e−
3α
4 (2b−b2−b3)

2−α2 (b1−b3)
2−α2 (b1−b2)

2

+
27α4

4π4

∫ 3∏

i=1

d2biPq–q(bi)Pq–q(3b− b2− b3)

× e−
3α
4 (2b−b2−b3)

2−α2 (b1−b3)
2−α2 (b1−b2)

2

+
9α4

π4

∫ 4∏

i=1

d2biPq–q(bi)

× exp

[
−
3α

4
(4b−b1−b2−b3−b4)

2

−
α

2
(b4−b3)

2−
α

2
(b1−b2)

2

−
α

12
(b1+b2−b3−b4)

2
]
. (B.4)

The five pair interaction diagrams are shown in Fig. 19.

Fig. 19. Five diagrams for the interactions of five quark pairs

In this case we have

ImA5pairs(s, b)

=
36α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(b2+ b4− b1)

× exp

[
−
3α

2
(2b+b1/3−2b2/3−2b3/3−b4)

2

−
α

2
(b1−b4)

2−
α

2
(b1−b2)

2

−
2α

3
(b1+b2−b3)

2

]

+
9α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b1+ b2− b3− b4)

× exp

[
−
2α

3
(3b/2−b1/2+b2−3b3/2−b4/2)

2

−
α

2
(b2−b4)

2−
α

2
(3b−b1−b3−b4)

2

−
2α

3
(b1−b2/2−b4/2)

2

]

+
36α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b4)

× exp

[
−
2α

3
(3b/2−b1/2−b2−b3/2−b4)

2

−
α

2
(b1−b4)

2−
α

2
(b1−b3)

2

−
2α

3
(b1/2+b2−b3−b4/2)

2

]

+
36α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b4)

× exp

[
−
2α

3
(3b−b1−b2/2−b3/2−b4)

2

−
α

2
(b1−b2)

2−
α

2
(b2−b3)

2

−
2α

3
(b1/2−b2/2+b3−b4)

2

]

+
27α3

16π3

∫ 3∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b3)

×Pq–q(b1− b2− b3)

× exp

[
−
3α

4
(2b−b2−b3)

2−
α

2
(b1−b2)

2

−
α

4
(b2−b3)

2−
α

3
(b1−b2/2−b3/2)

2
]
.

(B.5)

The diagrams with the interaction of six quark pairs are
shown in Fig. 16. For this contribution we have

ImA6pairs(s, b)

=
6α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(b2+ b4− b1)

×Pq–q(b3+ b4− b1)
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× exp

[
−
3α

2
(2b−2b2/3−2b3/3−b4+b1/3)

2

−
α

2
(b4−b1)

2−
α

2
(b1−b2)

2

−
2α

3
(b3−b2/2−b1/2)

2

]

+
36α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b4)

×Pq–q(b2+ b4− b1)

× exp

[
−
2α

3
(3b−b1/2−b2+b3−3b4/2)

2

−
α

2
(b2−b1)

2−
α

2
(b1−b4)

2

−
2α

3
(b3−b1−b2)

2

]

+
36α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b+ b1− b2− b3− b4)

×Pq–q(b2+ b4− b1)

× exp

[
−
2α

3
(3b+b1/2−b2−b3−3b4/2)

2

−
α

2
(b2−b1)

2−
α

2
(b1−b4)

2

−
2α

3
(b3−b1/2−b2/2)

2

]

+
6α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b4)

×Pq–q(3b− b1− b3)

× exp

[
−
2α

3
(3b−b1−b2/2−b3/2−b4)

2

−
α

2
(b2−b1)

2−
α

2
(b2−b3)

2

−
2α

3
(b4−b3−b1/2+b2/2)

2

]
. (B.6)

The diagrams with the interaction of seven quark pairs
are shown in Fig. 20.
For these diagrams we have

ImA7pairs(s, b)

=
18α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(2b− b4− b3)

Fig. 20. Two diagrams for the interactions of seven quark pairs

×Pq–q(b2+ b4− b1)Pq–q(b1− b2+ b3)

× exp

[
−
2α

3
(3b−b1/2−b2/2−b3−b4)

2

−
α

2
(b4−b1)

2−
α

2
(b1−b2)

2

−
2α

3
(b3−b2+b1/2−b4/2)

2

]

+
18α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b4− b3)

×Pq–q(3b− b4− b2)Pq–q(b2− b1+ b4)

× exp

[
−
2α

3
(3b+3b1/2−b2−b3−3b4/2)

2

−
α

2
(b4−b1)

2−
α

2
(b1−b2)

2

−
2α

3
(b3−b2/2−b1/2)

2

]
. (B.7)

Finally, there is only one type of diagram with interac-
tions for eight and nine quark pairs (see Fig. 21).
So we have for the diagrams with the interaction of

eight quark pairs

ImA8pairs(s, b)

=
α4

π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(2b− b1)Pq–q(2b− b2)

×Pq–q(2b− b1− b2− b3)Pq–q(b1− b2+ b4)

× exp

[
−
2α

3
(b−b1/2+b2/2−b4)

2

−
α

2
(b2−b1)

2−
α

2
(2b−b1−b2)

2

−
2α

3
(2b−b1/2−b2/2−b3)

2

]
, (B.8)

and the diagram for nine quark pair interactions gives

ImA9pairs(s, b)

=
α4

9π4

∫ 4∏

i=1

d2bi Pq–q(bi)Pq–q(2b− b1)Pq–q(2b− b4)

×Pq–q(2b− b1+ b2− b4)Pq–q(b3− b2+ b4)

Fig. 21. Two diagrams for the interactions of eight and nine
quark pairs
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×Pq–q(b1− b2− b3)

× exp

[
−
2α

3
(b+b1/2−b3−b4/2)

2

−
α

2
(b4−b1)

2−
α

2
(2b−b1−b4)

2

−
2α

3
(b1/2−b2−b4/2)

2

]
. (B.9)

In our numerical calculations we used only the
ImA(s, b)1pair–ImA(s, b)7pairs terms of the amplitude. The
terms ImA(s, b)6pairs and ImA(s, b)7pairs are important
only at energies close to the LHC one.

Appendix C

As an example of an expression for the calculation of the
survival probability in the framework of our approach we
consider the term of the elastic amplitude with three inter-
acting quark pairs:

ImA(s, b)3pairs

=
6α3

2π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−
3α
2 (b−b1/3−b2/3−b3/3)

2−α2 (b2−b3)
2− 2α3 (b1−b2/2−b3/2)

2

+
27α3

π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−
α
2 (3b−b1−b2−b3)

2−α2 (b2−b1)
2− 3α4 (b−b3)

2

+
9α3

π3

∫ 2∏

i=1

d2bi Pq–q(bi)Pq–q(3b− b2− b1)

× e−
α
3 (3b−3b1/2−3b2/2)

2−α4 (b2−b1)
2

+
27α3

π3

∫ 3∏

i=1

d2bi Pq–q(bi)

× e−3α(b−b2/2−b3/2)
2−α2 (b2−b1)

2−α2 (b1−b3)
2
. (C.1)

Let us rewrite the first term of this expression. Using
the recipe of (33), we rewrite

3∏

i=1

Pq–q(bi)→F
1
SP,3pairs(b1, b2, b3)

=
e
− b2

2R2
QH

2πR2H
P̂q–q(b1)Pq–q(b2)Pq–q(b3)

+
e
− b2

2R2
QH

2πR2H
P̂q–q(b2)Pq–q(b3)Pq–q(b1)

+
e
− b2

2R2
QH

2πR2H
P̂q–q(b3)Pq–q(b1)Pq–q(b2) .

(C.2)

We have the expression of the r.h.s. with (C.2) instead of∏3
i=1 Pq–q(bi) in the first term of the elastic amplitude.
Equation (C.1) gives the answer for the first term of
the SP amplitude Â3pairs(s, b). Of course, for obtaining
Â(s, b)3pairs we must perform such a replacement in each
term of (C.1). Doing so we obtain

Â(s, b)3pairs

=
6α3

2π3

∫ 3∏

i=1

d2bi F
1
SP,3pairs(b1, b2, b3)

× e−
3α
2 (b−b1/3−b2/3−b3/3)

2−α2 (b2−b3)
2−2α3 (b1−b2/2−b3/2)

2

+
27α3

π3

∫ 3∏

i=1

d2bi F
2
SP,3pairs(b1, b2, b3)

× e−
α
2 (3b−b1−b2−b3)

2−α2 (b2−b1)
2− 3α4 (b−b3)

2

+
9α3

π3

∫ 2∏

i=1

d2bi F
3
SP,3pairs(b1, b2)Pq–q(3b− b2− b1)

× e−
α
3 (3b−3b1/2−3b2/2)

2−α4 (b2−b1)
2

+
27α3

π3

∫ 3∏

i=1

d2bi F
4
SP,3pairs(b1, b2, b3)

× e−3α(b−b2/2−b3/2)
2−α2 (b2−b1)

2−α2 (b1−b3)
2
. (C.3)
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